Manipulierte Ausweisdokumente - wie gefälschte Lichtbilder erkannt werden können

Christoph Busch

copy of slides available at: https://christoph-busch.de/about-talks-slides.html
more information at: https://christoph-busch.de/projects-mad.html

Ringvorlesung Cybersicherheit (HMdIS)
November 10, 2022
Overview

Agenda

• Introduction on Biometrics
• Morphing Problem description
• Morphing Attack Detection (MAD) - Scenarios and Methods
• Automated Face Morphing Attack Detection
• Human examiners at Face Morphing Attack Detection
• Conclusion
Identity Authentication in General

Identity authentication can be achieved by:

- **Something you know:**
 Password, PIN, other secret

- **Something you own:**
 SmartCard, USB-token, key

- **Something you are**
 Body characteristics

Something you know or own you may lose, forget or forward to someone else, with biometrics this is more difficult.
Biometric Face Recognition

Automated Border Control (ABC) gates

- supervised control

Project goals:

- Self-Service to increase throughput
- Biometric verification

Biometric probe = Biometric reference

Source: Bundespolizei
Verification - Identification

Verification

- 1:1
- validate a biometric claim
Verification - Identification

Verification
- 1:1
- validate a biometric claim

Identification
- 1:n search

Verification Diagram:
- Probe
- ID
- Comparator
- Score: 0.95
 Decision: Verified

Identification Diagram:
- Probe
- Comparator
- Scores: [0.95 0.30 0.15 0.25]
 Decision: Identified, subject 1
- Enrolment DB
- References
Border Security depends on Passport Security

The passport is the security anchor

- One individual - one passport

Principle of unique link of ICAO

- ICAO - International Civil Aviation Organisation
- One individual - one passport
- ICAO 9303 part 2, 2006:
 "Additional security measures: inclusion of a machine verifiable biometric feature linking the document to its legitimate holder"

image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/
Principle of unique link of ICAO

- **One** individual - one passport

We don’t want this principle of **unique link** to be broken

- **Multiple** individuals - one passport

![Image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/](https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/)
What is Morphing?
What is Morphing?

Do you remember the story

- if you kiss a frog …
What is Morphing?

Do you remember the story

- if you kiss a frog …
- … the frog will turn into a prince

Source: www.promipool.de
What is Morphing?

Or with minor modification of the story:

- if you kiss a frog …
- … the frog will turn into a princess
What is Morphing?

Or with minor modification of the story:

- if you kiss a frog …
- … the frog will turn into a princess
- Morphing can make this dream possible (even without the kiss)
 ‣ with the frog and the princess as actors

Image source: https://www.myposter.de/motive/frosch-bild
acting in this talk

Therese Johaug acting as princess in this talk
What is Morphing?

In our real world morphing can become a threat
• with a criminal and an accomplice as actors
• take the criminal
• and the accomplice
• morphing can transform one face image into the other
What is Morphing?

In our real world morphing can become a threat
• with a criminal and an accomplice as actors
• take the criminal
• and the accomplice
• morphing can transform one face image into the other
• and you can stop halfway in the transformation
A good Morph …

… is not as simple as you think

- Alignment at inner and outer eyecorner landmarks, will cause artifacts (e.g. iris shadows)

- A good morph requires automated and manual post-processing
Problem Description
Problem: Morphing Attacks

Morphing attack scenario

- Passport *application* of the accomplice A
Problem: Morphing Attacks

Morphing attack scenario

- Border control
Problem: Morphing Attacks

Verification against morphed facial images

Probe sample of A

Enrolment sample of A

Similarity = 0.87

Probe sample of C

Enrolment sample of C

Similarity = 0.94

Similarity = 0.59

Enrolment morph M

Similarity = 0.65

Similarity = 0.03
Problem: Morphing Attacks

Is it a really problem? - YES!

• In September 2018 German activists
 ▸ used a morphed images of Federica Mogherini (High representative of the European Union for Foreign Affairs and Security Policy) and a member of their group
 ▸ and received an authentic German passport.

Problem: Morphing Attacks

Is it a really problem? - YES!

Report by the Slovenian Police [Tork2021]

- Reported in September 2021 that in last 12 month more than 40 morphing cases were detected at Airport Police in Ljubljana

- Business model:
 - Albanian citizens, applying for a Slovenian passport
 - offered as a professional service travel route via Vienna and Warsaw to Canada

Problem: Morphing Attacks

Proposed solutions to the Morphing Attack Problem:

• 1.) Photo studio should digitally sign the picture taken by Photo Studio and send it to the passport application office
 ‣ this is in progress for Finland
• 2.) Switch to live enrolment
 ‣ that is the case for Norway and Sweden
• 3.) Software-supported detection of morphed face images

Regarding 2.) EU Regulation 2019/1157:

• on strengthening the security of identity cards in recital 32 states:
 "... To this end, Member States could consider collecting biometric identifiers, particularly the facial image, by means of live enrolment by the national authorities issuing identity cards."
What is the vulnerability of FRS?
Scale of the Problem: Vulnerability of FRS

NIST IR 8430 report on FRS vulnerability [Ngan2022]

- **Accurate** FRS are more vulnerable!

The morphing attack paradox

• The better the face recognition system (FRS)
 ‣ the lower the false non-match rate (FNMR)
 ‣ the more tolerant is the FRS at the defined FMR (e.g. 0.01 %)

• The more tolerance the FRS has
 ‣ the more vulnerability we can observe

• Accurate FRS are more vulnerable!
Morphing Attack Detection (MAD)

Scenarios and Methods
Real world scenarios

- **Single image** morphing attack detection (S-MAD)
 - One *single suspected* facial image is analysed (e.g. in the passport application)

Face Pre-processing and Feature Extraction

Morphing Attack Detection (S-MAD) with texture analysis

- Image descriptors as **hand-crafted** features

![Diagram showing the process of face pre-processing and feature extraction, followed by morph detection.](image)

Image Descriptors:
- LBP
- BSIF
- Sharpness
- HOG
- SIFT/SURF
- PRNU

Morph Detection Classifier

Face Pre-processing and Feature Extraction

S-MAD with image descriptor

• Local Binary Pattern (LBP)
Face Pre-processing and Feature Extraction

S-MAD with image descriptor / forensic approach

- Photo Response Non-Uniformity (PRNU)

Morphing Attack Detection Scenarios

Real world scenarios

• Single image morphing attack detection (S-MAD)
 ‣ One single suspected facial image is analysed (e.g. in the passport application)

• Differential morphing attack detection (D-MAD)
 ‣ A pair of images is analysed - and one is a trusted Bona Fide image
 ‣ Biometric verification (e.g. at the border)

Differential Morphing Attack Detection

D-MAD with landmark analysis

- **Angle** based features
- **Distance** based features

D-MAD with deep learning

- **Deep Face** representations of Deep CNNs

- Deep representations extracted by the neural network (on the lowest layer)
- Feature space with **small dimension**: 512 (for ArcFace)
- SVM with radial basis function

MAD Evaluation
NIST IR 8292 report presented September, 2022

FRVT MORPH

• results for MAD algorithms from six research labs:
 ‣ University of Bologna (UBO)
 ‣ Norwegian University of Science and Technology (NTNU)
 ‣ Hochschule Darmstadt (HDA)
 ‣ West Virginia University (WVU)
 ‣ Universidade de Coimbra (VIS)
 ‣ secunet (SEC)
NIST FRVT MORPH

NIST IR 8292 report presented September, 2022

- Performance of Automated Face Morph Detection
 - results for print and scanned morphs

D-MAD with meta [SRMB2020] Deep Face representation
Human Experts in MAD

Border guards, case handlers, document examiners, ID experts

- S-MAD: 410 participants, 400 trials (4 x 100 tasks)
- D-MAD: 469 participants, 180 trials

Human Experts in MAD

Overall accuracy

Human Experts in MAD

Does exposure to morphed images help?

We are facing a situation, where

- Passports with morphs are already in circulation
 - 1000+ reported cases
 - Switch to live enrolment is a good decision, but does not solve the problem - at least for the upcoming 10 years

- Passports with morphed face images will have a major impact on border security
 - introduction of EU’s entry/exit system

- In combination with passport brokers a dramatic problem
 - the darknet offers numerous opportunities …

Summary: MAD is the hardest challenge that I have seen in my 25 research years on biometrics
More information

The MAD website
https://www.christoph-busch.de/projects-mad.html

The MAD survey papers

 https://ieeexplore.ieee.org/document/9380153
More information on MAD

The 2021 NBL - EAB workshop

https://eab.org/events/program/229

- Luuk Spreeuwers (University of Twente) - recorded talk
 - Morphing Attacks on Face Recognition Systems

- David Robertson (University of Strathclyde) - recorded talk
 - Psychological Experiments on Morphed Faces

- Kiran Raja (NTNU) - recorded talk
 - Morphing Attack Detection Approaches

- Matteo Ferrara (University of Bologna) - recorded talk
 - Bologna Online Evaluation Platform

- Frøy Løvåsdal (Norwegian Police) - recorded talk
 - Morphing Attack Detection Capabilities of Human Examiners

- Mei Ngan (NIST) - recorded talk
 - Face Morphing Detection Evaluation

- Naser Damer (Fraunhofer IGD) - recorded talk
 - Generating Morphs with Generative Adversarial Networks

- Christian Rathgeb (Hochschule Darmstadt) - recorded talk
 - Detection of Face Beautification Manipulations

- Uwe Seidel (BKA)
 - Research Needs for Morphing Attack Detection
More Information on MAD

National Institute of Standards and Technology (NIST)

- Will host the virtual 3rd International Face Performance Conference (IFPC)
- November 15 - 17, 2022.
- The registration is open and free.
- The first draft agenda is posted at: https://www.nist.gov/news-events/events/2022/11/international-face-performance-conference-ifpc-2022

- The presentations:
 - Matjaž Torkar (Ministry of the Interior Police, Slovenia)
 - Morphing Cases in Slovenia
 - Matteo Ferrara (University of Bologna)
 - Morphing Attack Potential (MAP)
 - Nasser Nasrabadi (West Virginia University)
 - Face Morph Generation and Attack Detection
 - Kiran Raja (Norwegian University of Science and Technology)
 - Overview on Morph Attack Detection Development
 - Frøy Løvåsdal (National Police Directorate, Norway)
 - Morphing Attack Detection - Analysing Human Observer Ability
I would like to thank my colleagues working on this topic:

- In the NBL - HDA research group:
 - Kiran Raja, Raghu Ramachandra, Loic Bergeron, Sankini Godage, Guoqiang Li, Jag Mohan Singh, Sushma Venkatesh, Haoyu Zhang
 - Ulrich Scherhag, Christian Rathgeb, Daniel Fischer, Siri Lorenz, Robert Nichols Sergey Isadskiy, Marta Gomez-Barrero, Juan Tapia, Mathias Ibsen

- In the FACETRUST-Project:
 - Ralph Breithaupt, Johannes Merkle

- In the SOTAMD-Project and iMARS-Project:
 - Dinusha Frings, Fons Knopjes, Uwe Seidel, Frøy Løvåsdal
 - Davide Maltoni, Matteo Ferrara, Analisa Franco
 - Raymond Veldhuis, Luuk Spreeuwers,

- In the NIST-FRVT-MORPH-Project:
 - Mei Ngan, Patrick Grother, Kayee Hanaoka, Jason Kuo
Contact

Prof. Dr. Christoph Busch
Principal Investigator

Hochschule Darmstadt FBI
Haardtring 100
64295 Darmstadt, Germany
christoph.busch@h-da.de

Telefon +49-6151-16-30090
https://dasec.h-da.de
https://www.athene-center.de