
Wird 6G Open Source?

Wie wir Mobilfunktechnologie wieder selbst gestalten

Prof. Dr. Stefan Valentin

6GLab, Hochschule Darmstadt 20.11.2025

Einleitung

- Mobilfunk hat unser Leben verändert:
 - Seit 2016: Hat jeder Mensch (rechnerisch) mindestens 1 Handy*
 - 2023/24: In DE ca. 1,4 aktive Endgeräte pro Einwohner**
- Mobilfunknetze in DE:
 - Seit 90ern Massentechnologie (2G/GSM)
 - Ca. 222.500 Basisstationen (5G: 56.500)**
 - Derzeit: 5G Ausbau, Vorbereitung auf 6G
- Diese Infrastruktur hängt stark von chinesischen Netzausrüstern ab!

^{*}Cisco, "Visual Networking Index: Forecast and Methodology, 2016-2021", White Paper, Feb. 2017.

^{**}BNetzA, Stand: Ende 2023/Anfang 2024

Wie verringern wir diese technologische Abhängigkeit?

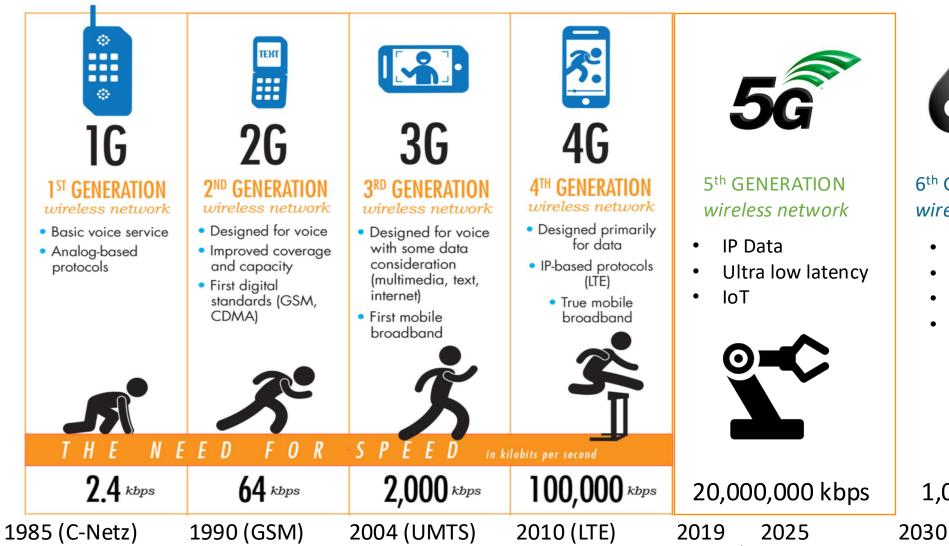
(Ohne neue strategische Abhängigkeiten einzugehen)

Welche neuen **Technologien** können wir dafür nutzen?

Was bedeutet dies für die Sicherheit unserer Netze?

Gliederung

Was ist ein Mobilfunknetz?


• Huawei, ZTE & Co. – Die Abhängigkeitsfalle

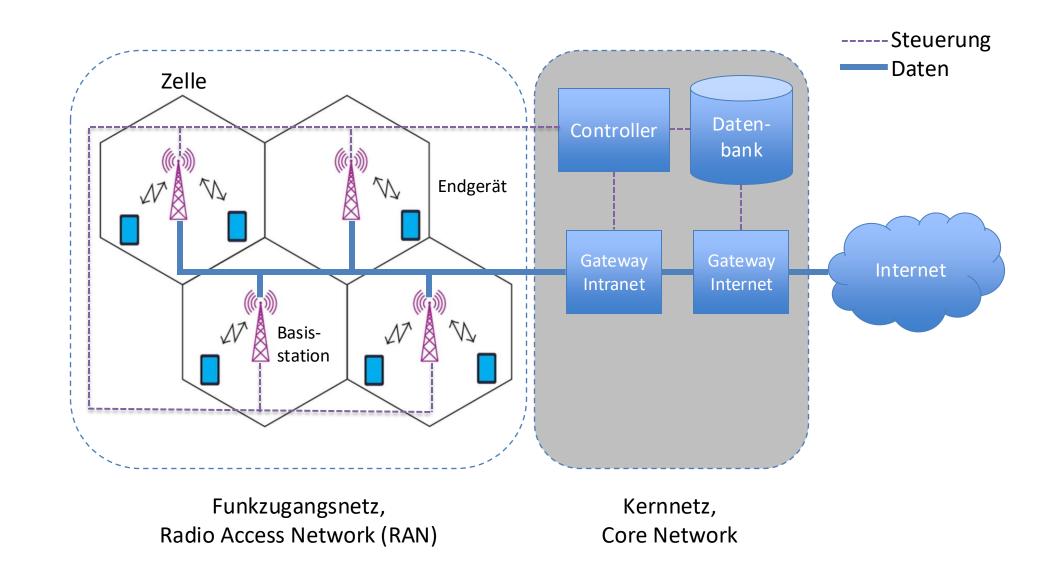
Virtuelle Netze – Eine technologische Revolution

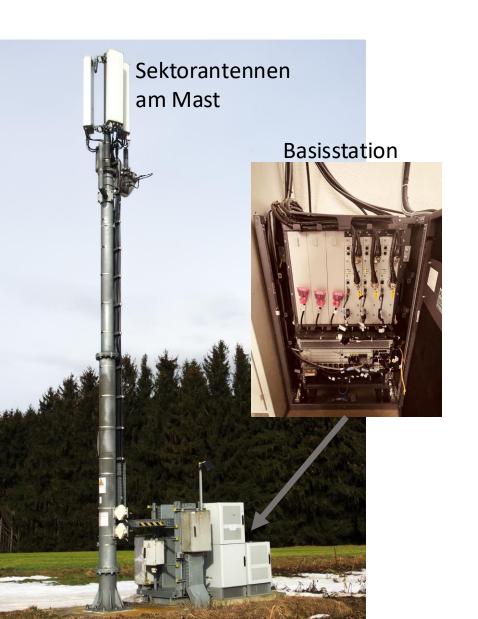
Quelloffene Netze – Ein Ausweg für 6G?

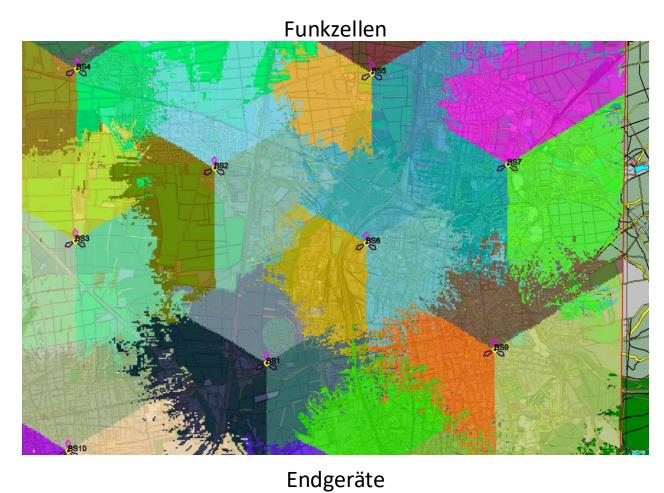
Fazit & Ausblick

Mobilfunktechnologie: 40 Jahre Evolution

6th GENERATION wireless network


- Al Integration
- Sensing
- Ultra low latency


1,000,000,000 kbps


8 millionenfache Datenrate in 40 Jahren!

Was ist ein Mobilfunknetz?

Wie sieht ein Funkzugangsnetz aus?

Gliederung

Was ist ein Mobilfunknetz?

• Huawei, ZTE & Co. – Die Abhängigkeitsfalle

Virtuelle Netze – Eine technologische Revolution

Quelloffene Netze – Ein Ausweg für 6G?

Fazit & Ausblick

Wie abhängig sind die Netzbetreiber von chinesischen Ausrüstern?

- Europäische Ausrüster (Nokia, Ericsson) wurden seit 2010 von chinesischen Ausrüstern (Huawei, ZTE) verdrängt
 - Betrifft 4G und 5G
- Expertenschätzung*:

Netzbetreiber	Funkzugangsnetz (RAN)	Kernnetz (Core)
Deutsche Telekom	55-65% (Huawei)	<10% (Rest: Ericsson, Cisco)
Vodafone	50-60% (Huawei, ZTE)	<5% (Rest: Ericsson)
Telefónica O2	60-70% (Huawei, ZTE)	0% (Nur Ericsson, Nokia)

^{*}Stand 2024/25, exakte Zahlen sind Geschäftsgeheimnisse

Wie problematisch ist diese Abhängigkeit?

Es gibt kein "smoking gun": Keinen öffentlichen Beweis für Hintertüren

• Chinesischer Geheimdienst hat (gesetzlich garantierten) Zugriff auf Hintertüren und legale Überwachungsschnittstellen (lawful interception)

- Monopolistische Methoden (z.B. Dumping, Herstellerbindung) erhöhen die Abhängigkeit
- Die Abhängigkeitsfalle:

Outsourcing Verlust von <u>Proprietäre</u> Verlust von Verlust von Verlust von Kein neues Verständnis & Lehre & Systeme & (Wartung, Kontrolle **Fachpersonal Fachpersonal** Schnittstellen Betrieb...) **Know how** Forschung

Technologische Abhängigkeit ist eine Einbahnstraße!

Maßnahmen

- Einschätzung der Bundesbehörden: Das Risiko ist zu hoch!
 - 4G ist essentiell und 5G ist kritische Infrastruktur
- Regulatorische Maßnahmen:
 - 2021: IT-Sicherheitsgesetz 2.0 verlangt Zertifizierung von Netzkomponenten durch BSI
 - Jul. 2024: BMI einigt sich mit Netzbetreibern auf Zeitplan
 - Okt. 2025: BNetzA verschärft Sicherheitskatalog (Entwurf), insb. für 5G-Netze
- Technische Maßnahmen:
 - Netzbetreiber: Entfernung von Huawei-Komponenten aus dem Kernnetz
 - Funkzugangsnetz bleibt problematisch!

nologischen Souver zulassen" desregierung schlie Telekommunikation

In 5G-Kernnetzen dürfen bis spätes Komponenten von Huawei und ZTE mel 5G-Zugangs- und Transportnetzen sind b kritischen Managementsysteme der beid

PRESSEMITTEILUNG - 11 Bundeskanzler Merz: "Werden keine Stärkung der Sicher Komponenten aus China im 6G-Netz

heise+ Newsticker Security IT & Tech Developer KI

Bei einer Wirtschaftskonferenz erwähnte Bundeskanzler, dass chinesische schen 5G-Mobilfui Mobilfunktechnik für deutsche Netze ausscheiden soll.

https://www.heise.de/news/Bundeskanzler -Merz-Werden-keine-Komponenten-aus-China-im-6G-Netz-zulassen-11079939.html

Gliederung

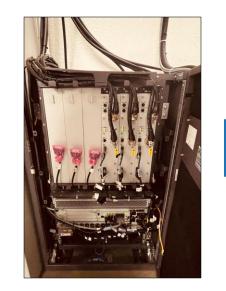
Was ist ein Mobilfunknetz?

Huawei, ZTE & Co. – Die Abhängigkeitsfalle

Virtuelle Netze – Eine technologische Revolution

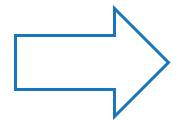
Quelloffene Netze – Ein Ausweg für 6G?

Fazit & Ausblick

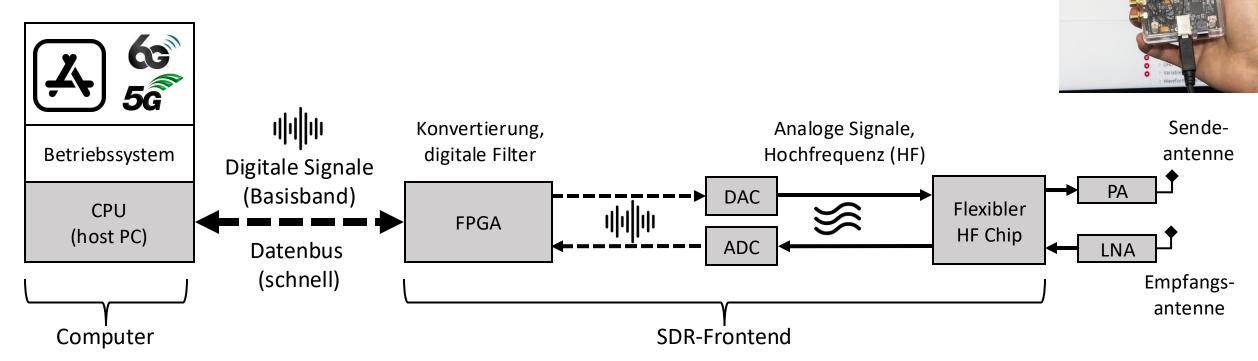

Wie verringern wir diese technologische Abhängigkeit?

(Ohne neue strategische Abhängigkeiten einzugehen)

Welche neuen **Technologien** können wir dafür nutzen?


Ausweg: Technologie ändern! (die Karten neu mischen)

- 1. Schritt: Softwarisiere die Basisstation
 - Implementiere so viele Funktionen wie möglich in Software auf einem generischen Computer, möglich für alles Digitale
 - Minimiere Anteil spezifischer Chips (ASICs), nötig für alles Analoge
- 2. Schritt: Mache aus der Basisstations-Software ein Open-Source Projekt
 - Code offen, frei nutzbar, Beiträge von jedem, begutachtet von Experten
 - Erfolgsmodell bei IT-Infrastruktur: Linux, Apache, MySQL, ...
 - Zu verrückt für Mobilfunk? Gibt es schon! ©



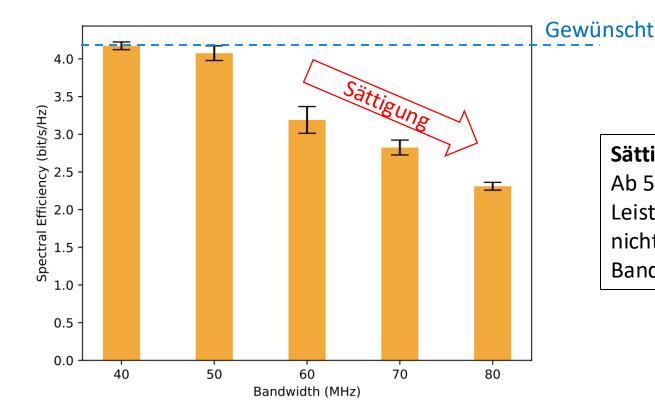
Ein Computer als Basisstation? Wie geht das?

- Software-defined radio (SDR)*: Bekannt seit den 90er Jahren
 - Funksignale werden auf einem Computer generiert/verarbeitet
 - Beliebt bei Amateurfunk, Forschung und dem Militär
 - Inzwischen reif für breite Anwendung im Mobilfunk

^{*}J. Mitola, "Software radios-survey, critical evaluation and future directions," in Proc. National Telesystems Conference (NTC), 1992, pp. 13/15-13/23, doi: 10.1109/NTC.1992.267870.

Prototyp einer 5G Basisstation

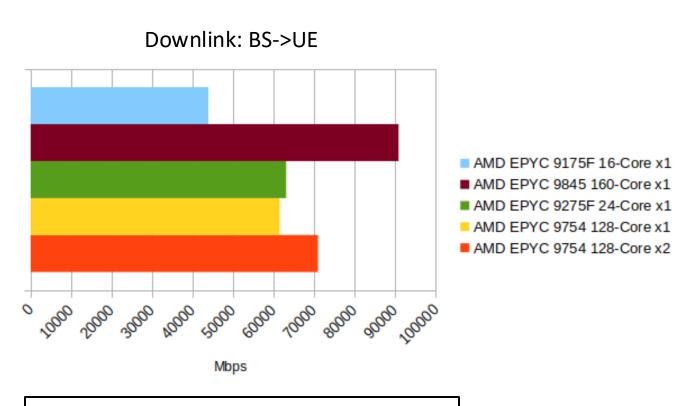
Distributed Unit(DU)/Radio Unit (RU) für 5G Release 17 (standalone, TDD) im ORAN Split 8, 100 MHz bandwidth, 2x2 MIMO

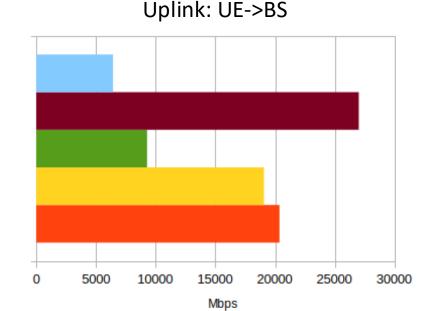


Welche Grenzen haben SDRs im Mobilfunk?

- Benötigte Rechenleistung steigt linear mit dem Produkt aus
 - Bandbreite des Funksignals und
 - Anzahl der Sende-Empfangs-Antennenpaare

Experiment: Spektrale Effizienz einer 5G SDR Basisstation


- CPU: AMD Ryzen 9
- 5G NR, SA, Rel. 17
- n78 3.7-3.8 GHz
- 2x2 MIMO
- Variierte Bandbreite
- TCP Vollast



Sättigung:

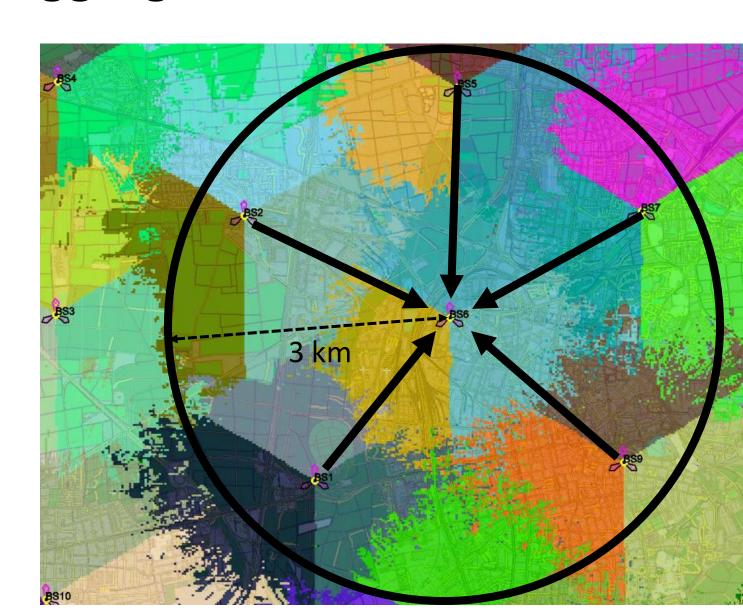
Ab 50 MHz genügt die Leistung dieser CPU nicht mehr, um die volle Bandbreite zu nutzen.

Das war ja nur ein Gaming-PC! © Welchen Durchsatz schaffen **große** Server?

90 Gbit/s pro 160-Kern CPU

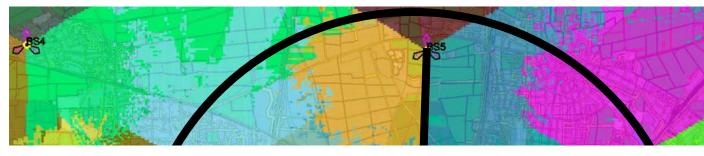
Max. Datenrate pro 5G sector: 2,5 Gbit/s

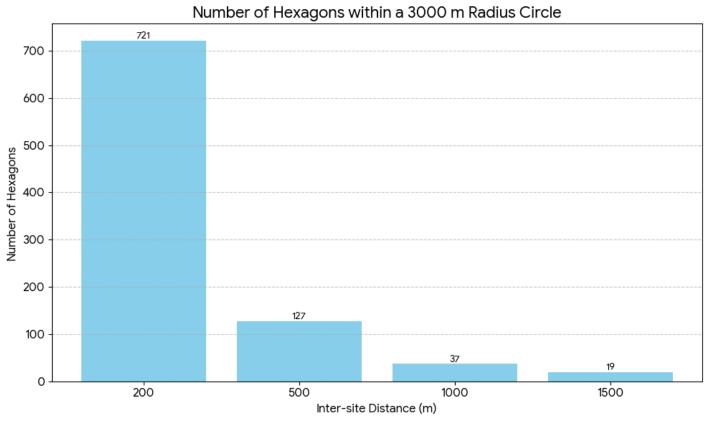
=> 90/2,5 = 36 Sektoren/CPU


26 Gbit/s pro 160-Kern CPU

Max. Datenrate pro 5G sector: 2,5 Gbit/s

=> 26/2,5 = 10,4 Sektoren/CPU


Massiver Vorteil: Zellaggregation

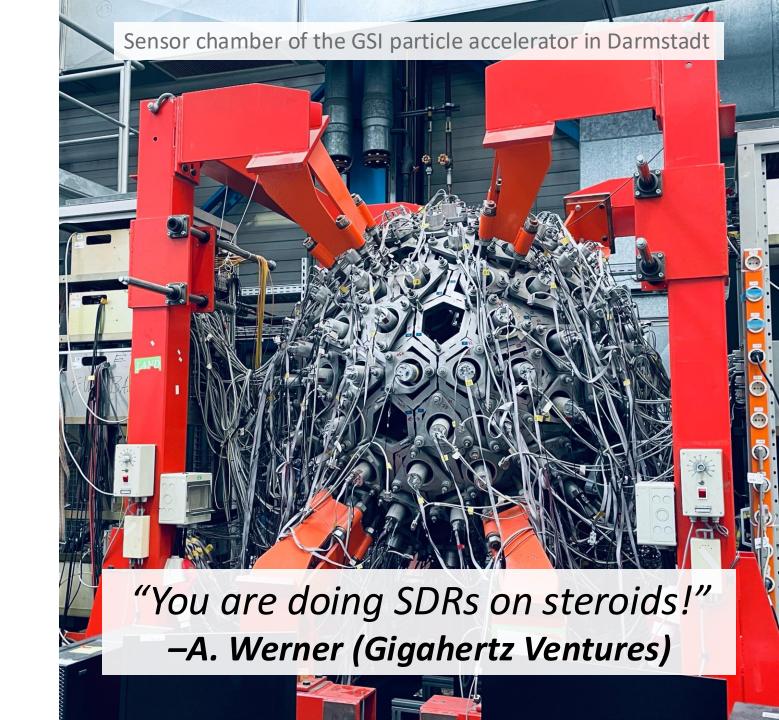

- Damit lässt sich die Hardware für 9 Sektoren in ein gemeinsames Datenzentrum aggregieren
- Dieses *edge data center* muss in der Nähe der Masten liegen
 - z.B. innerhalb eines 3 km Radius (ca. 10 us Signallaufzeit)
- Je nach Zelldichte 19 bis zu 721
 Zellen pro Datenzentrum
- Massive Kosten- und Energieeinsparung!

Massiver Vorteil: Zellaggregation

- Damit lässt sich die Hardware für 9 Sektoren in ein gemeinsames Datenzentrum aggregieren
- Dieses edge data center muss in der Nähe der Masten liegen
 - z.B. innerhalb eines 3 km Radius (ca. 10 us Signallaufzeit)
- Je nach Zelldichte 19 bis zu 721
 Zellen pro Datenzentrum
- Massive Kosten- und Energieeinsparung!

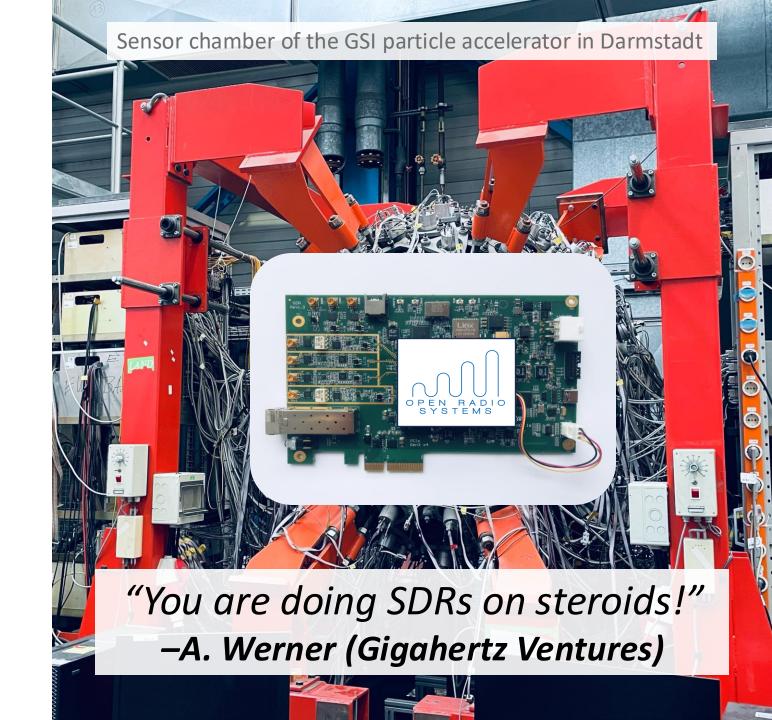
Welche weiteren Grenzen gibt es?

- **Datenbus** zwischen Computer und SDR-Frontend überträgt nun Signale statt Daten
 - => Muss 2 bis 24 mal schneller sein als die Datenrate
- Wie schnell? für 6G:
 - 16 bit/S 2 400 MS/s = 12,8 Gbit/s pro Antenne
- Damit sind mit aktueller PC-Technologie maximal 16 Antennen möglich
 - Reine Hardware-Lösungen werden mindestens 64-Antennen unterstützen
- Mein Startup arbeitet an einer Lösung für dieses Problem

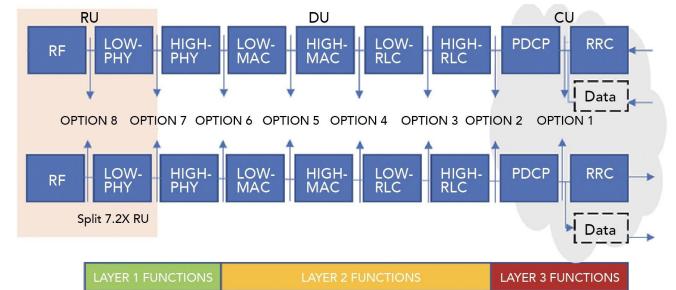

	Required fronthaul bus	No. of re	quired PO	le lanes	No. of req. Et	hernet ports
М	capacity [Gbit/s]	G3	G4	G5	200 [Gbps]	400 [Gbps]
1	12.8	2	1	1	1	1
2	25.6	4	2	1	1	1
4	51.2	7	4	2	1	1
8	102.4	13	7	4	1	1
16	204.8	26	13	7	2	1
32	409.6	52	26	13	3	2
64	819.2	103	52	26	5	3
128	1638.4	205	103	52	9	5
256	3276.8	410	205	103	17	9

S. Valentin, "SCALES6G: Ein skalierbarer Fronthaul-Bus für Massive MIMO in softwarebasierten 6G-Mobilfunknetzen", *Projektskizze*, Jun. 2025.

Das ist hart!


real-time DSP on multi-core CPUs
3.2 Gbit/s bus capacity per signal path
sub-nanosecond sync of antenna paths

Das ist hart!


real-time DSP on multi-core CPUs
3.2 Gbit/s bus capacity per signal path
sub-nanosecond sync of antenna paths

Wird die Softwarisierung von der Branche akzeptiert? Ja! Sie läuft schon!

Open RAN Allianz:

- Schlägt seit 2018 offene Schnittstellen für virtuelle Funkzugangsnetze (vRANs) vor
- Schwerpunkt: Interoperabilität zwischen Herstellern (nicht: Open Source)
- Schrittweiser Übergang von Hardware-BS (Split 1) zur vollen Software-BS (Split 8)
- Vorschläge fließen derzeit in die 6G Standardisierung des 3GPP ein
- Anfang 2026 will die Deutsche Telekom 30.000 edge data center für Open RAN ausschreiben*

*https://www.telecomtv.com/cont ent/the-future-of-ran/deutschetelekom-preps-rfq-for-30k-ransites-54211/

Gliederung

Was ist ein Mobilfunknetz?

Huawei, ZTE & Co. – Die Abhängigkeitsfalle

Virtuelle Netze – Eine technologische Revolution

Quelloffene Netze – Ein Ausweg für 6G?

Fazit & Ausblick

5G und 6G als Open Source?

- Im 1. Schritt haben wir aus 5G und 6G Apps gemacht
- Im 2. Schritt machen wir aus diesen Apps quelloffenen Code und Open-Source Projekte
 - Kein technisches sondern ökonomisches Problem: Wie damit Geld verdienen?
 - Ideen: Netzbetreiber machen das selbst, maßgeschneiderte Software/Dienste ...
- Einzige Möglichkeit die Abhängigkeit von einem Hersteller zu beseitigen
 - Bsp. Vendor lock-in: Intels Open-RAN Software (FlexRAN) läuft nur auf Intel CPUs, Nvidias *Aerial Software* basiert auf CUDA, CUDA läuft nur auf Nvidia Chips
- Es gibt derzeit 2 lauffähige, quelloffene 5G-Implementierungen:

Beide kommen aus Europa!

Neues Projekt: OCUDU

- srsRAN wird unter dem Dach der Linux-Foundation ein neues Software 6G implementieren: "The Linux of RAN"
- Industriefreundliche BSD-Lizenz
- Finanziert vom US-Verteidigungsministerium
- Erste Version: März 2026

September 30, 2025

NSC Announces DoW Awardees DeepSig and SRS to Deliver Open Source Software as a Reference Architecture to Power NextG Network Innovation

WASHINGTON, D.C. (September 30, 2025) — The National Spectrum Consortium

https://www.nationalspectrumconsortium.org/news-detail/ocudu-awardees-deepsig-srs

https://ocudu.org

Wie verringern wir diese technologische Abhängigkeit?

(Ohne neue strategische Abhängigkeiten einzugehen)

Welche neuen **Technologien** können wir dafür nutzen?

Was bedeutet dies für die Sicherheit unserer Netze?

Sicherheit quelloffener vRANs

Proprietäre Basisstation (BS):

- Hardware BS: Keine Einsicht in Systemverhalten, Netzbetreiber muss Hersteller vertrauen
- Software BS (geheimer Code):
 - Hardware und Betriebssystem ist beobachtbar, Softwareverhalten kann nicht nachvollzogen werden
 - Daten aus geheimen Schnittstellen schwer interpretierbar
 - evtl. Zwang zu unsicherer Hardware (vendor lock-in)

Quelloffene BS:

- Öffentlichkeit:
 - Geheimhalten von Hintertüren unmöglich, jeder kann Fehler finden und beheben
 - Unterwanderung möglich, jedoch hohe Wahrscheinlichkeit der Entdeckung
- Prüfbarkeit: Systemverhalten kann beobachtet und nachvollzogen werden
 - Programmierung ist vollständig bekannt, CPU muss sich entsprechend verhalten, sonst kompromittiert
- Kein Vendor-lock in möglich

Gliederung

Was ist ein Mobilfunknetz?

• Huawei, ZTE, Nvidia & Co. – Die Abhängigkeitsfalle

Virtuelle Netze – Eine technologische Revolution

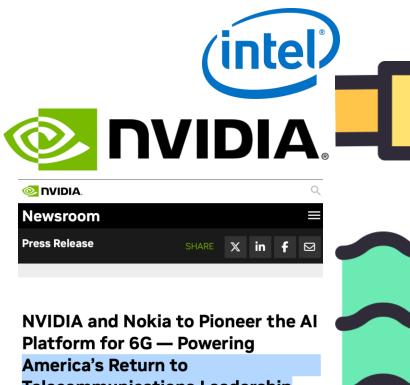
Quelloffene Netze – Ein Ausweg für 6G?

Fazit & Ausblick

Fazit

- Technologische Abhängigkeiten lassen sich:
 - Politisch und regulatorisch einhegen
 - aber nur technologisch lösen

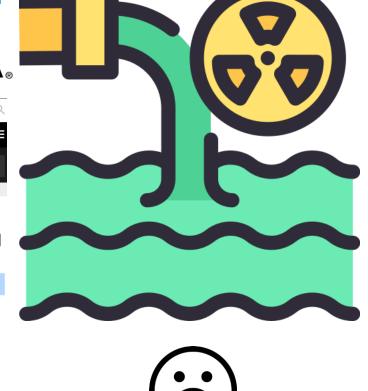
- Quelloffene Software-Basisstationen revolutionieren Funkzugangsnetze:
 - Verschiedene Grade von Softwarisierung in den 6G-Standards
 - Offene Schnittstellen ermöglichen freie Herstellerwahl auf Komponentenebene
 - Abhängigkeit von chinesischen Netzausrüstern wird vermieden
- Diese Revolution erhöht prinzipiell die Sicherheit der Mobilfunknetze:
 - Komponenten von problematischen Herstellern können vermieden werden
 - Quelloffene Systeme sind prüfbar: Hintertüren, Fehler können gefunden und behoben werden
 - Quelloffene Systeme sind beobachtbar: Verhält sich z.B. der Prozessor anders als die (bekannte Programmierung), ist das System kompromittiert


Ausblick

- 6G wird eine spannende Mobilfunkgeneration! Geprägt von:
 - Vielfältige Softwarisierung: virtuelle RANs, Cloud RANs, SDRs
 - quelloffenem Code, verschiedene Open-Source Stacks mit individuellen Lösungen
 - Technologie so zugänglich und so offen wie noch nie: Ideal für Forschung & Lehre
- Vereinheitlichung der Hard- und Software:
 - Stellt neue Anforderungen an Rechenleistung, Buskapazität und Energieeffizienz => Treibt Entwicklung der Server-Technik voran
 - Einhegung des Ausrüster-Oligopols zugunsten von KMUs und Startups
 - Erhöht Effizienz bei Installation, Wartung und Betrieb
- Veränderte Sicherheitslage der Mobilfunknetze:
 - Normale Probleme der IT-Sicherheit nun auch in den Basisstationen
 - Kompensiert durch bessere Prüfbarkeit quelloffener Systeme & offener Schnittstellen

Höhere Souveränität der Netzbetreiber: breitere Lieferkette, kein vendor lock-in, Aufbau von eigenem Know-How Höhere Souveränität der Gesellschaft: Einbahnstraße der Abhängigkeit wurde verlassen!

Vorsicht vor neuen Abhängigkeiten!



Telecommunications Leadership

NVIDIA to Invest \$1 Billion in Nokia to Accelerate AI-RAN Innovation and Lead Transition from 5G to 6G

October 28, 2025

https://nvidianews.nvidia.com/news/nvidianokia-ai-telecommunications?ncid=so-link-246946-vt26&linkId=100000388985369

Vielen Dank! Fragen? ©

SPRIN-D

Prof. Dr. Stefan Valentin

Head of 6GLab
Head of Networking Technologies Group (da/net)
Department of Computer Science
Darmstadt University of Applied Sciences
Germany

stefan.valentin@h-da.de

https://www.sprind.org/worte/podcasts/ 114-stefan-valentin

